

Can an Automated Aquatic Biomonitoring System Identify Modes of Toxic Action and Detect Neurotoxicants?

Mobile Facilities

Briefing Objectives

- Automated biomonitoring overview
- USACEHR biomonitors in the field
- Possible future improvements
 - Evaluate modes of toxic action
 - Improve response to neurotoxicants

Automated Biomonitoring System Elements

- Uses electronic sensors to monitor physiological responses (whole organism emphasis)
- Provides continuous, real-time monitoring in an automated system (aquatic emphasis)
- Provides an alarm when abnormal conditions are detected

Automated Biomonitor Responses

Type of Organism Example Response

Algae Fluorescence

Bacteria Respiration

Zooplankton Activity

Mussels Valve movement

Aquatic Insects Activity

Bees Activity

Automated Biomonitor Responses

Type of Organism Example Response

Fish Electric organ discharge

Movement/activity

Rheotaxis

Ventilatory patterns

Biomonitor Advantages

- Provide early warning of developing toxic conditions
- Provide real-time, continuous data (remote option)
- Identify toxicity from unsuspected chemicals
- Integrate effects of multiple chemicals
- Provide biologically-directed water sampling
- Increase engineer/operator awareness of toxicity

USACEHR =

Watershed Network

USACEHR Applications

- Aberdeen Proving Ground effluent monitoring
- Chesapeake Bay surface water monitoring

Bluegill Ventilatory Patterns

USACEHR Automated Biomonitoring: Future Emphasis

- Improve response to neurotoxicants
- Improve biomonitor data interpretation

Improve Response to Neurotoxicants

• Background:

- acoustic startle response is used as an indicator of sensory acuity in mammals
- in fish, startle response results from Mauthner cell stimulus → "C-start" escape
- fish in biomonitor show heightened startle response for some neurotoxicants (malathion, TMPP)

Improve Response to Neurotoxicants

• <u>Issue</u>: Could incorporation of the "startle response" enhance biomonitor response to neurotoxicants?

Questions

- acoustic vs. visual stimulus?
- detect enhanced vs. reduced responsiveness?
- acclimation to repeated stimuli?
- statistical analysis issues?

- Background:
 - biomonitor provides non-specific response
 - laboratory studies have linked fish physiologic responses to general toxic mode of action

- Fish behavioral syndromes (Drummond and Russom, 1990)
 - behavioral responses of fish to acutely toxic levels of over 300 organic chemicals
 - three syndromes: hypoactivity, hyperactivity, physical deformity
 - parameters: locomotor activity, startle response, ventilatory activity, convulsions, vertebral deformities

- Fish acute toxicity syndromes (McKim and others, 1987-1990)
 - physiologic responses of trout
 - chemicals with varying modes of toxic action
 - PCA/DFA to classify 8 modes of action based on physiologic responses
 - nine physiologic variables classified 93% of fish (70/75)

Fish Acute Toxicity Syndromes

- Example modes of action
 - Narcosis
 - Polar narcosis
 - Acetylcholinesterase inhibitors
 - Respiratory uncouplers
 - Respiratory irritants
- Physiologic parameters used in DFA analysis
 - arterial pH, ventilation rate, cough rate, oxygen uptake efficiency, oxygen consumption (85%)
 - plus heart rate, hematocrit, arterial oxygen and carbon dioxide (93%)

Improve Biomonitor Data Interpretation

• <u>Issue</u>: Can the physiological responses of fish, measured in a field biomonitor, be useful in assessing the toxic mode of action causing a biomonitor response?

- Field Application Problems
 - too few physiologic parameters, too many possible modes of action
 - response patterns not always from acute exposure
 - mixtures more likely than single chemicals
- <u>But</u> ... may be a useful tool in conjunction with other lines of evidence (e.g., chemical analyses)?